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Abstract. The order of the phase transition within a long polymer molecule in dilute QoIution 
brought about by the intramolecular forces is investigated within the context of a lattice 
model. It is found that the entropy is continuous at the transition but that the density changes 
discontinuously, implying that the transition has features of both first- and second-order 
transitions. 

1. Introduction 

A long standing problem in the theory of polymer chains in solution is the effect of 
intramolecular forces on the shape and size of the chain. These intramolecular forces 
will usually be of van der Waals type consisting of a hard-core repulsion at short distances 
and a longer range attractive interaction. Domb (1974) has suggested that the problem 
is mathematically analogous to the condensation of a gas of molecules with van der 
Waals forces, except that the existence of the chain imposes restrictions on the con- 
figurational space of the molecules. 

One expects to find, using this analogy, that at sufficiently high temperatures the 
repulsive forces will dominate ; the chain will be in the ‘gaseous’ state and its ‘density’ p 
will be very low. Just how low can be judged as follows. Estimate the density p as 

P - NID3, (1.1) 
where D is a typical dimension of the N-link chain such as its radius of gyration. For 
a random walk chain, D - JNb, where b is the length of a link of the chain. For a 
self-avoiding walk, or a polymer in which excluded volume forces are taken into account, 
D - N’b, with v N 0.6 (McKenzie and Moore 1971). In either case, the density p tends 
to zero as the number of links N tends to infinity. 

At low temperatures, the analogy with the gas-liquid condensation suggests that the 
attractive forces between the links of the chain will become dominant and cause a phase 
transition to a higher density (ie ‘liquid’) phase. The chain will not now be extended 
and of vanishingly low density, but instead exist in the form of a globule of given density 
which remains finite in the limit of large N. The temperature T, at which the transition 
takes place from the ‘gaseous’ to the ‘globule’ phase would be expected to be lower 
than the Flory 0 temperature, and close to the temperature at which the polymer or 
polymer-rich solution separates out of a very dilute solution. Of course, a true phase 
transition within an N-link chain can only take place in the limit of infinite N For 
finite N, the phase transition will be ‘rounded-off. 
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The main purpose of this note is to examine the order of the transition. Domb (1974), 
Edwards (1970) and Lifshitz (1969) have argued on various grounds that the transition 
should be first order and there is both numerical (Domb 1974) and experimental evidence 
(McIntyre and Mazur 1974) that the density does indeed change discontinuously at the 
transition temperature from zero to some finite value. Such behaviour is usually thought 
characteristic of a first-order transition. We shall also find such behaviour for the 
density in our model calculation. On the other hand, the entropy in our calculation 
turns out to be continuous at the transition temperature but with a discontinuity in its 
temperature derivative. This would imply that the transition was second order in the 
Ehrenfest sense (Pippard 1957). It looks therefore that this polymer phase transition, 
while technically second order, may be somewhat unusual, as the obvious candidate 
for the order parameter of the transition-the density-does not decrease continuously 
to zero as the temperature approaches T,  from below. 

The model we employ of the polymer chain in solution is a variation on the widely 
used Orr (1947) model (see also Fisher and Hiley 1961). In that model, an N-link polymer 
chain is represented by an N-step self-avoiding walk on a regular lattice, with attractive 
forces between nearest neighbours. In a self-avoiding walk, no lattice site is visited more 
than once. In our model, which we shall call the crossing model, the walks are such that 
no lattice bond is used more than once. This restriction on the walks, like the restriction 
that no site is visited more than once in a self-avoiding walk, is to be thought of as a 
consequence of the short range excluded volume forces. In our model, a lattice site can 
be visited several times, the maximum number of times depending on the coordination 
number of the lattice. If the coordination number of the lattice is four, the walk can 
cross itself only once at any given site. From now on, we shall suppose that we are 
always dealing with lattices of such coordination number, noting that the best lattice 
for individual polymer chains of carbon atoms is the tetrahedral lattice (DiMarzio and 
Gibbs 1958). Attractive forces are incorporated in the model in interactions which occur 
only at sites at which the polymer touches or crosses itself. Let V b e  the energy associated 
with such a ‘crossing’ or ‘touching’. The configurational partition function of an N-link 
chain is then 

where w = exp( - V i k T ) ,  and cN,i is the number of walks of N steps with t ‘crossings’ 
or ‘touchings’, in which no lattice bond is used more than once in the walk. It is to 
be supposed that if the walk begins or ends at a site which has been already visited 
during the walk, then there is a ‘touching’ at that site. I/ -= 0 corresponds to attractive 
interactions. Note that the crossings are not permanent links; their average number 
( 2 )  is given by 

I 

To avoid unnecessary repetition, +e shall suppose in the rest of this paper that the term 
‘walk’ means a walk in which no lattice bond is used twice. We believe that the crossing 
model on a tetrahedral lattice captures the physics of a polymer chain in solution as 
satisfactorily as does the Orr model. 

As might have been expected, the partition function, Q N ( w ) ,  cannot be calculated 
without resorting to approximation. The scheme we have adopted is to ‘approximate’ 
the tetrahedral lattice by the modified cactus Bethe lattice of figure 1. Technically, this 
is a Husimi tree, each block of which is a triangle. On this lattice, QN(w) can be obtained 
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Figure 1. Portion of a triangle cactus Bethe lattice of coordination number four. 

exactly in the limit of large N .  Nagle (1974) has pointed out that the widely-used Flory- 
Huggins approximation for polymers in solution is exact for a plain, that is, non-cactus 
Bethe lattice. Thus our approximation scheme follows closely the traditional calcula- 
tions of the thermodynamics of polymers in solution, and so has their virtues and 
defects. 

It proves convenient not to evaluate QN(w) directly, but to find the generating 
function 

OD 

G(z, W )  1 Q N ( W ) Z ~ .  
N =  1 

Having obtained G(z, w), QN(w) can be found from the inversion formula 

(1.4) 

The evalution of G(z ,  w) and its inversion to get QN(w) is performed in 8 2. The 
thermodynamics of the phase transition are derived in 8 3, special attention being 
devoted to the entropy and density of the polymer chain both above and below the 
transition. 

2. The generating function 

We shall first study the partition function AN(w) for all walks of N steps which terminate 
at the origin, their starting point, and which return to the origin via the same triangle 
as they started out. AN(w) is defined by 

where aN,r is the number of walks of N steps which return to the origin via the same 
triangle as they set out in and which have t ‘crossings’ or ‘touchings’. Thus a3,1 = 2, 
a6,2 = 8 etc and it is clear that N must be a multiple of three and that t = +N.  Hence 
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The generating function for AN(w) is 
m 

A(z, w)  A = zNAN(W) 
NL 3 

= 2wz3 + 8w2z6 + . . . . (2.3) 

A closed form expression for A(z,  w)(  = A )  can be found. Let us label the origin 0, and 
the other two vertices of the triangle which contains the origin and are visited by the 
N-step walk, X and Y. Starting from the origin, the walk could go first to site X, then 
take M steps into the lattice beyond X before returning to X. After returning to X the 
walk must continue to Y (it cannot return to 0 directly as this would mean using the 
bond OX twice). At Y, the walk could take ( N -  M - 3 )  steps into the lattice beyond Y 
before returning to Y and then go on back to 0 (it cannot go back to X as this would 
involve using the bond XY twice). This walk could of course be undertaken in the 
opposite direction, that is first to Y rather than X. The number of such walks is 

2aMaN - M - 3 

with aN as in (2.2) and a, 1. The factor of 2 arises from the possibility of taking the 
walk in either direction. M can have the values 0 , 3 , 6 ,  . . . , N - 3, so the total number of 
walks of N steps of this kind is given by 

N - 3  

a N = 2  1 aMaN-M-3. 
M = O  

Multiplying both sides of (2.4) by w"3 and using (2.2) we get 
N - 3  

A N ( W )  = 2w A M ( w ) A N - M - 3 ( w ) *  
M = O  

(2.5) is a typical convolution. It can be solved by multiplying both sides of it by F and 
summing over N .  Using the definition o f A ( z ,  w) in (2.3), one obtains 

A ( ~ ,  w )  = 2wz3(1 + ~ ( z ,  w) )2  

A(z, W )  

(2.6) 

(2.7) 

so, solving this quadratic equation in A(z, w)  and taking the root which recovers (2.3), 

A = [ I  - 4wz3 - d( 1 - 8wz3)]/4wz3. 

The method used to find A(z,  w) can be extended to obtain G(z, w) and so we shall 
only outline the rest of the argument. Walks can be classified by the number of steps 
their endpoint lies from the origin. The generating function for walks which terminate 
at the origin, regardless of whether or not the walk returns to the origin in the same 
triangle as it started out, is 

2A( 1 + A). (2.8) 
(The factor of two arises because the walk could start in either of the two triangles at 
the origin; the factor (1 + A )  arises because in a walk which starts in a given triangle, 
it may or may not return to the origin via the other triangle at the origin.) 

The generating function for the partition function of walks which terminate one step 
from the origin is 

[ z  + z2( 1 + A)] (1 + A y .  (2.9) 
(The generating function for a 'direct' step is (1 + A)z( 1 + A), while the generating 
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function for the ‘indirect’ step is (1 + A)z( 1 + A)z( 1 + A )  ; their Sum gives (2.9).) There are 
four lattice sites which can be reached by one step from the origin, so that these lattice 
sites give a contribution to G(z, w) of 

4[z+ z’(1 + A ) ]  (1 +A)’.  (2.10) 

Similarly, the contribution to G(z, w) made by walks which terminate at the eight sites 
two steps from the origin is 

(2.1 1) 8[z + z’( 1 +A)]’(  1 + A)’. 

G(z, w) is the sum of the generating functions of the partition functions of walks which 
terminate 0, 1 ,2 ,  3 , .  . . steps from the origin, and hence can be seen to be 

4[z + z’( 1 + A)] ( 1 + A)* 
G(z,w) = 2 A ( l + A ) +  

1-2[z+z’(l+A)] . (2.12) 

On substituting the expression (2.7) for A, (2.12) becomes 

G(z, W) = . (2.13) 

Multiplying top and bottom by [ -4wz’ + 2wz - 1 - J( 1 - 8wz3)], we have 

( -  16wz5 + 8wz4 - 12wz3 +4z2  + 2) -(8wz4 -4wz3 + 42’ + 2)J(1- 8wz3) 
4wz5[ - ~ W Z ’  + ~ W Z  - 1 + J( 1 - 8wz3)] 

[-8wz5+4(4w- l )z4-2(3w+2)z3-2z+ 13 
+[8wz5-4(2w- l )z4+2(w+2)z3+2z-  1]d’(1 -8wz3) 

G(z, W) = . (2.14) 
2wz5[8wz3 - ( 8 ~  - 4 ) ~ ’  + ( 2 ~  + 4 ) ~  - 21 

The partition function QN(w) is obtained from G(z, w) by using (1.5). For large N 
the integral will be dominated by the singularity of G(z, w) closest to the origin in the 
complex z plane. From (2.14), it can be seen that the singularities of G(z, w) are the three 
poles arising from the vanishing of the denominator and the three branch cuts from the 
term ,/( 1 - 8wz3). For small w, that is, high temperatures, there is a pole on the positive 
real axis at z = a(w) which lies closer to the origin than the other two poles, and also 
than the branch cuts, which start at a distance S(w) = l / 2 ~ ” ~  from the origin. As w 
increases, the branch cuts and pole change their relative distances from the origin until 
at a certain critical value of w, which we shall call w, and which corresponds to the phase 
transition temperature T,,  they are the same distance from the origin. For w > w,, that 
is, at temperatures less than the phase transition temperature T,, the pole a(w) disappears. 
It is cancelled by a zero in the numerator, leaving the branch cuts as the nearest and 
dominant singularities. Thus in the limit as N -, CO, 

QN(w) C(W)/U”(W), w < w ,  or T > T ,  (2.15) 

and 

where C(w) and D(w) are rather complicated functions of w which we shall not specify, 
as in the large N limit (see (3.2)) they do not affect the thermodynamics of the polymer. 

The critical value, w,, at which the transition takes place can be found as follows. Let 
z, be the common distance of the pole and branch cut from the origin when they coincide 
at w = w,. There 

J( l -8wczf)  = 0 (2.17) 
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which means, using (2.7), that A(z, ,  w,) = 1. The denominator of (2.12) then implies that 

1-2(zc+2z,2) = 0 (2.18) 

with z = z,. The value of z, is given by the positive root of this quadratic equation, and 
equals ( J S -  l)j4. Hence, from (2.17) 

4.2. 
1 8 w , = - =  

822 (J5-1)3 - 
(2.19) 

3. The phase transition 

The free energy can be related to the partition function QN(w), by the bridge equation 

F = -kTlnQ,(w) (3.1) 

so for T < T,, the free energy of the polymer, which will be in the ‘globule’ or ‘liquid’ 
phase, is using (2.16) 

F = -kTlnD(w)-+lnN+NkTlnP(w) 

NkTln P(w) a s N = > c o  

= 3N V -  NkT In 2. (3.2) 

Given the free energy, the thermodynamics of the ‘globule’ phase is easily worked out. 
Using (1.3) the average number of ‘crossings’ or ‘touchings’ within a configuration in 
this phase is given by 

and the fluctuations about the mean are measured by the magnitude of 

which, from (3.3), is zero. Therefore, when in the ‘globule’ phase, the polymer has taken 
up those configurations which have the maximum possible number of ‘crossings’ 4N. 
Unfortunately the concept of density is not well defined for a Bethe lattice, as such 
lattices are in some senses infinite dimensional (Nagle 1974). That the mean number of 
‘crossings’ equals the maximum possible number of ‘crossings’ would, on a normal 
lattice, imply that the globule was of non-vanishing density. It would seem very reason- 
able to claim that our approximation predicts a finite globule density. 

From (3.2), the globule entropy S has the simple form 

S = Nkln2  (3.5) 
and the specific heat 

as C = T - = O .  
dT 

The vanishing of the specific heat in the ‘globule’ phase suggests that the polymer 
configurations within this phase are effectively ‘frozen-in’. ‘Frozen-in’ behaviour 
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observed in other model systems is often accompanied by a first-order transition (Domb 
1974). We shall, however, show that the entropy is continuous at the transition. 

The free energy of the high-temperature phase is given by, using (2.15) 

F = -kTlnC(w)+NkTlna(w) 

=> NkTln a(w) a s N - + o o  (3.7) 

For general w < wc, a(w) can be obtained by finding the smallest root of the cubic 
expression in the denominator of (2.14). We shall not need the full expression for a(w) 
as our main interest is in the entropy as T -+ T, ,  

At T,, a(wc) = P(w,). It can be seen that the condition for the entropy itself being 
continuous at the transition is that 

From (2.13), a(w) must satisfy the equation 

-4wa2+2wa-1+J(1-8wa3) = 0. (3.9) 

If one employs this expression to calculate da(w)/dw, one sees that as w * w, and U * z,, 
that through J(1- 8wz3) => 0 in this limit, one has 

(3.10) 

and (3.8) follows. The entropy is continuous at the transition and equal to Nk In 2. 
In figure 2 we have plotted the entropy per link as a function of temperature for 

both T > T,  and T < T,  in the limit of N * 00. We have also plotted the entropy per 
link for chains of 12 steps and 30 steps in order to illustrate the rounding of the transition 
that takes place in a polymer of finite length. One can see some of the features of the 
infinite N limit such as the discontinuity in the derivative of the entropy at w, building 

I I I I 1 I I I 

0 I 2 3 

Figure 2. Configurational entropy per link as a function of temperature for chains of 12, 30 
and infinite numbers of links. 
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up as N gets large. The convergence to the large N limit is slowest at w N w, and greatest 
well away from the transition, as of course might have been expected. 

The density of the polymer in the high-temperature or ‘gaseous’ phase is not easily 
derived from the behaviour on a Bethe lattice. However, as the polymer in this phase 
is rather similar to a self-avoiding walk, there seems no reason to suppose that the 
density does not vanish in the large N limit. 

4. Conclusions 

The transition has characteristics of both first- and second-order transitions. The 
entropy is continuous at the transition, which implies that the transition is of second 
order. The density, the probable order parameter of the system, jumps from zero in the 
‘gaseous’ phase to a finite value in the ‘globule’ phase which is typical of first-order 
behaviour. The polymer configurations in the ‘globule’ phase are ‘frozen-in’, a feature 
which would normally be expected to produce first-order behaviour. The jump in 
density is consistent with the sudden change with temperature of the radius of gyration 
of high molecular weight polystyrene in cyclohexane reported by McIntyre and Mazur 
(1974). 

Nagle (1974) has studied a variety of models for the melting of polymers and found 
that the ‘classical’ Flory-Huggins type of approximation employed in this paper is a 
reasonable first approximation, but misses many important features of the various 
models he examined. We suspect that a similar conclusion will eventually be drawn 
about the polymer phase transition in dilute solution studied in this note. 
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